Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473850

RESUMO

Free radicals (FRs) are unstable molecules that cause reactive stress (RS), an imbalance between reactive oxygen and nitrogen species in the body and its ability to neutralize them. These species are generated by both internal and external factors and can damage cellular lipids, proteins, and DNA. Antioxidants prevent or slow down the oxidation process by interrupting the transfer of electrons between substances and reactive agents. This is particularly important at the cellular level because oxidation reactions lead to the formation of FR and contribute to various diseases. As we age, RS accumulates and leads to organ dysfunction and age-related disorders. Polyphenols; vitamins A, C, and E; and selenoproteins possess antioxidant properties and may have a role in preventing and treating certain human diseases associated with RS. In this review, we explore the current evidence on the potential benefits of dietary supplementation and investigate the intricate connection between SIRT1, a crucial regulator of aging and longevity; the transcription factor NRF2; and polyphenols, vitamins, and selenium. Finally, we discuss the positive effects of antioxidant molecules, such as reducing RS, and their potential in slowing down several diseases.


Assuntos
Antioxidantes , Selênio , Humanos , Antioxidantes/farmacologia , Vitaminas/farmacologia , Selênio/farmacologia , Polifenóis/farmacologia , Estresse Oxidativo , Vitamina A/farmacologia , Vitamina K/farmacologia , Espécies Reativas de Oxigênio/farmacologia
2.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542492

RESUMO

The phrase "Let food be thy medicine…" means that food can be a form of medicine and medicine can be a form of food; in other words, that the diet we eat can have a significant impact on our health and well-being. Today, this phrase is gaining prominence as more and more scientific evidence suggests that one's diet can help prevent and treat disease. A diet rich in fruits, vegetables, whole grains, and lean protein can help reduce the risk of heart disease, cancer, diabetes, and other health problems and, on the other hand, a diet rich in processed foods, added sugars, and saturated fats can increase the risk of the same diseases. Electrophilic compounds in the diet can have a significant impact on our health, and they are molecules that covalently modify cysteine residues present in the thiol-rich Keap1 protein. These compounds bind to Keap1 and activate NRF2, which promotes its translocation to the nucleus and its binding to DNA in the ARE region, triggering the antioxidant response and protecting against oxidative stress. These compounds include polyphenols and flavonoids that are nucleophilic but are converted to electrophilic quinones by metabolic enzymes such as polyphenol oxidases (PPOs) and sulfur compounds present in foods such as the Brassica genus (broccoli, cauliflower, cabbage, Brussel sprouts, etc.) and garlic. This review summarizes our current knowledge on this subject.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo , Dieta
3.
Cells ; 12(23)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067112

RESUMO

Hydrogen sulfide (H2S) was recognized as a gaseous signaling molecule, similar to nitric oxide (-NO) and carbon monoxide (CO). The aim of this review is to provide an overview of the formation of hydrogen sulfide (H2S) in the human body. H2S is synthesized by enzymatic processes involving cysteine and several enzymes, including cystathionine-ß-synthase (CBS), cystathionine-γ-lyase (CSE), cysteine aminotransferase (CAT), 3-mercaptopyruvate sulfurtransferase (3MST) and D-amino acid oxidase (DAO). The physiological and pathological effects of hydrogen sulfide (H2S) on various systems in the human body have led to extensive research efforts to develop appropriate methods to deliver H2S under conditions that mimic physiological settings and respond to various stimuli. These functions span a wide spectrum, ranging from effects on the endocrine system and cellular lifespan to protection of liver and kidney function. The exact physiological and hazardous thresholds of hydrogen sulfide (H2S) in the human body are currently not well understood and need to be researched in depth. This article provides an overview of the physiological significance of H2S in the human body. It highlights the various sources of H2S production in different situations and examines existing techniques for detecting this gas.


Assuntos
Sulfeto de Hidrogênio , Animais , Humanos , Cistationina , Gases , Transdução de Sinais , Óxido Nítrico , Mamíferos
4.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894920

RESUMO

This review focuses on DNA damage caused by a variety of oxidizing, alkylating, and nitrating species, and it may play an important role in the pathophysiology of inflammation, cancer, and degenerative diseases. Infection and chronic inflammation have been recognized as important factors in carcinogenesis. Under inflammatory conditions, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from inflammatory and epithelial cells, and result in the formation of oxidative and nitrative DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Cellular DNA is continuously exposed to a very high level of genotoxic stress caused by physical, chemical, and biological agents, with an estimated 10,000 modifications occurring every hour in the genetic material of each of our cells. This review highlights recent developments in the chemical biology and toxicology of 2'-deoxyribose oxidation products in DNA.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Inflamação/patologia , Dano ao DNA , Oxirredução , Estresse Oxidativo , DNA , Desoxiguanosina/metabolismo
5.
J Biochem Mol Toxicol ; 37(11): e23455, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37437103

RESUMO

The influence of modern lifestyle, diet, exposure to chemicals such as phytosanitary substances, together with sedentary lifestyles and lack of exercise play an important role in inducing reactive stress (RS) and disease. The imbalance in the production and scavenging of free radicals and the induction of RS (oxidative, nitrosative, and halogenative) plays an essential role in the etiology of various chronic pathologies, such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. The implication of free radicals and reactive species injury in metabolic disturbances and the onset of many diseases have been accumulating for several decades, and are now accepted as a major cause of many chronic diseases. Exposure to elevated levels of free radicals can cause molecular structural impact on proteins, lipids, and DNA, as well as functional alteration of enzyme homeostasis, leading to aberrations in gene expression. Endogenous depletion of antioxidant enzymes can be mitigated using exogenous antioxidants. The current interest in the use of exogenous antioxidants as adjunctive agents for the treatment of human diseases allows a better understanding of these diseases, facilitating the development of new therapeutic agents with antioxidant activity to improve the treatment of various diseases. Here we examine the role that RS play in the initiation of disease and in the reactivity of free radicals and RS in organic and inorganic cellular components.


Assuntos
Antioxidantes , Oxidantes , Humanos , Antioxidantes/farmacologia , Oxidantes/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Radicais Livres/química , Radicais Livres/farmacologia , Biomarcadores/metabolismo
6.
Foods ; 12(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37238755

RESUMO

Phytochemicals from plant extracts are becoming increasingly popular in the world of food science and technology because they have positive effects on human health. In particular, several bioactive foods and dietary supplements are being investigated as potential treatments for chronic COVID. Hydroxytyrosol (HXT) is a natural antioxidant, found in olive oil, with antioxidant anti-inflammatory properties that has been consumed by humans for centuries without reported adverse effects. Its use was approved by the European Food Safety Authority as a protective agent for the cardiovascular system. Similarly, arginine is a natural amino acid with anti-inflammatory properties that can modulate the activity of immune cells, reducing the production of pro-inflammatory cytokines such as IL-6 and TNF-α. The properties of both substances may be particularly beneficial in the context of COVID-19 and long COVID, which are characterised by inflammation and oxidative stress. While l-arginine promotes the formation of •NO, HXT prevents oxidative stress and inflammation in infected cells. This combination could prevent the formation of harmful peroxynitrite, a potent pro-inflammatory substance implicated in pneumonia and COVID-19-associated organ dysfunction, as well as reduce inflammation, improve immune function, protect against free radical damage and prevent blood vessel injury. Further research is needed to fully understand the potential benefits of HXT and arginine in the context of COVID-19.

7.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768162

RESUMO

Classically, superoxide anion O2•- and reactive oxygen species ROS play a dual role. At the physiological balance level, they are a by-product of O2 reduction, necessary for cell signalling, and at the pathological level they are considered harmful, as they can induce disease and apoptosis, necrosis, ferroptosis, pyroptosis and autophagic cell death. This revision focuses on understanding the main characteristics of the superoxide O2•-, its generation pathways, the biomolecules it oxidizes and how it may contribute to their modification and toxicity. The role of superoxide dismutase, the enzyme responsible for the removal of most of the superoxide produced in living organisms, is studied. At the same time, the toxicity induced by superoxide and derived radicals is beneficial in the oxidative death of microbial pathogens, which are subsequently engulfed by specialized immune cells, such as neutrophils or macrophages, during the activation of innate immunity. Ultimately, this review describes in some depth the chemistry related to O2•- and how it is harnessed by the innate immune system to produce lysis of microbial agents.


Assuntos
Superóxido Dismutase , Superóxidos , Superóxidos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Apoptose , Imunidade Inata
8.
Vaccines (Basel) ; 11(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36851096

RESUMO

Myeloid-derived suppressor cells MDSCs are a heterogeneous population of cells that expand beyond their physiological regulation during pathologies such as cancer, inflammation, bacterial, and viral infections. Their key feature is their remarkable ability to suppress T cell and natural killer NK cell responses. Certain risk factors for severe COVID-19 disease, such as obesity and diabetes, are associated with oxidative stress. The resulting inflammation and oxidative stress can negatively impact the host. Similarly, cancer cells exhibit a sustained increase in intrinsic ROS generation that maintains the oncogenic phenotype and drives tumor progression. By disrupting endoplasmic reticulum calcium channels, intracellular ROS accumulation can disrupt protein folding and ultimately lead to proteostasis failure. In cancer and COVID-19, MDSCs consist of the same two subtypes (PMN-MSDC and M-MDSC). While the main role of polymorphonuclear MDSCs is to dampen the response of T cells and NK killer cells, they also produce reactive oxygen species ROS and reactive nitrogen species RNS. We here review the origin of MDSCs, their expansion mechanisms, and their suppressive functions in the context of cancer and COVID-19 associated with the presence of superoxide anion •O2- and reactive oxygen species ROS.

9.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555303

RESUMO

This review examines the role of chlorine dioxide (ClO2) on inorganic compounds and cell biomolecules. As a disinfectant also present in drinking water, ClO2 helps to destroy bacteria, viruses, and some parasites. The Environmental Protection Agency EPA regulates the maximum concentration of chlorine dioxide in drinking water to be no more than 0.8 ppm. In any case, human consumption must be strictly regulated since, given its highly reactive nature, it can react with and oxidize many of the inorganic compounds found in natural waters. Simultaneously, chlorine dioxide reacts with natural organic matter in water, including humic and fulvic acids, forming oxidized organic compounds such as aldehydes and carboxylic acids, and rapidly oxidizes phenolic compounds, amines, amino acids, peptides, and proteins, as well as the nicotinamide adenine dinucleotide NADH, responsible for electron and proton exchange and energy production in all cells. The influence of ClO2 on biomolecules is derived from its interference with redox processes, modifying the electrochemical balances in mitochondrial and cell membranes. This discourages its use on an individual basis and without specialized monitoring by health professionals.


Assuntos
Compostos Clorados , Desinfetantes , Água Potável , Purificação da Água , Humanos , Compostos Clorados/química , Óxidos/química , Oxirredução , Desinfetantes/farmacologia , Cloro , Desinfecção
10.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36430532

RESUMO

This review examines the impact of reactive species RS (of oxygen ROS, nitrogen RNS and halogens RHS) on various amino acids, analyzed from a reactive point of view of how during these reactions, the molecules are hydroxylated, nitrated, or halogenated such that they can lose their capacity to form part of the proteins or peptides, and can lose their function. The reactions of the RS with several amino acids are described, and an attempt was made to review and explain the chemical mechanisms of the formation of the hydroxylated, nitrated, and halogenated derivatives. One aim of this work is to provide a theoretical analysis of the amino acids and derivatives compounds in the possible positions. Tyrosine, methionine, cysteine, and tryptophan can react with the harmful peroxynitrite or •OH and •NO2 radicals and glycine, serine, alanine, valine, arginine, lysine, tyrosine, histidine, cysteine, methionine, cystine, tryptophan, glutamine and asparagine can react with hypochlorous acid HOCl. These theoretical results may help to explain the loss of function of proteins subjected to these three types of reactive stresses. We hope that this work can help to assess the potential damage that reactive species can cause to free amino acids or the corresponding residues when they are part of peptides and proteins.


Assuntos
Aminoácidos , Cisteína , Aminoácidos/metabolismo , Triptofano , Proteínas , Metionina , Tirosina
11.
Vaccines (Basel) ; 10(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36298601

RESUMO

This review examines the role of reactive species RS (of oxygen ROS, nitrogen RNS and halogen RHS) on innate immunity. The importance of these species in innate immunity was first recognized in phagocytes that underwent a "respiratory burst" after activation. The anion superoxide •O2- and hydrogen peroxide H2O2 are detrimental to the microbial population. NADPH oxidase NOx, as an •O2- producer is essential for microbial destruction, and patients lacking this functional oxidase are more susceptible to microbial infections. Reactive nitrogen species RNS (the most important are nitric oxide radical -•NO, peroxynitrite ONOO- and its derivatives), are also harmful to microorganisms, including bacteria, viruses, and parasites. Hypochlorous acid HOCl and hypothiocyanous acid HOSCN synthesized through the enzyme myeloperoxidase MPO, which catalyzes the reaction between H2O2 and Cl- or SCN-, are important inorganic bactericidal molecules, effective against a wide range of microbes. This review also discusses the role of antimicrobial peptides AMPs and their induction of ROS. In summary, reactive species RS are the heart of the innate immune system, and they are necessary for microbial lysis in infections that can affect mammals throughout their lives.

12.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142645

RESUMO

This review discusses the formation of hypochlorous acid HOCl and the role of reactive chlorinated species (RCS), which are catalysed by the enzyme myeloperoxidase MPO, mainly located in leukocytes and which in turn contribute to cellular oxidative stress. The reactions of RCS with various organic molecules such as amines, amino acids, proteins, lipids, carbohydrates, nucleic acids, and DNA are described, and an attempt is made to explain the chemical mechanisms of the formation of the various chlorinated derivatives and the data available so far on the effects of MPO, RCS and halogenative stress. Their presence in numerous pathologies such as atherosclerosis, arthritis, neurological and renal diseases, diabetes, and obesity is reviewed and were found to be a feature of debilitating diseases.


Assuntos
Ácido Hipocloroso , Ácidos Nucleicos , Aminas , Aminoácidos , Animais , Carboidratos , Ácido Hipocloroso/metabolismo , Lipídeos , Mamíferos/metabolismo , Peroxidase/metabolismo
13.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924958

RESUMO

Living species are continuously subjected to all extrinsic forms of reactive oxidants and others that are produced endogenously. There is extensive literature on the generation and effects of reactive oxygen species (ROS) in biological processes, both in terms of alteration and their role in cellular signaling and regulatory pathways. Cells produce ROS as a controlled physiological process, but increasing ROS becomes pathological and leads to oxidative stress and disease. The induction of oxidative stress is an imbalance between the production of radical species and the antioxidant defense systems, which can cause damage to cellular biomolecules, including lipids, proteins and DNA. Cellular and biochemical experiments have been complemented in various ways to explain the biological chemistry of ROS oxidants. However, it is often unclear how this translates into chemical reactions involving redox changes. This review addresses this question and includes a robust mechanistic explanation of the chemical reactions of ROS and oxidative stress.


Assuntos
Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , DNA/metabolismo , Dano ao DNA , Doença/etiologia , Humanos , Peroxidação de Lipídeos , Mitocôndrias/metabolismo , Neutrófilos/metabolismo , Fosforilação Oxidativa , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas/metabolismo
14.
Antibiotics (Basel) ; 9(8)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722038

RESUMO

Fusarium head blight (FHB) is a disease that poses a major challenge in cereal production that has important food and feed safety implications due to trichothecene contamination. In this study, the effect of stevioside-a glycoside found in the leaves of candyleaf (Stevia rebaudiana Bertoni)-was evaluated in vitro against Fusarium culmorum (W.G. Smith) Sacc., alone and in combination (in a 1:1 molar ratio) with polyphenols obtained from milk thistle seeds (Silybum marianum (L.) Gaertn). Different concentrations, ranging from 32 to 512 µg·mL-1, were assayed, finding EC50 and EC90 inhibitory concentrations of 156 and 221 µg·mL-1, respectively, for the treatment based only on stevioside, and EC50 and EC90 values of 123 and 160 µg·mL-1, respectively, for the treatment based on the stevioside-polyphenol conjugate complexes. Colony formation inhibition results were consistent, reaching full inhibition at 256 µg·mL-1. Given that synergistic behavior was observed for this latter formulation (SF = 1.43, according to Wadley's method), it was further assessed for grain protection at storage, mostly directed against mycotoxin contamination caused by the aforementioned phytopathogen, confirming that it could inhibit fungal growth and avoid trichothecene contamination. Moreover, seed tests showed that the treatment did not affect the percentage of germination, and it resulted in a lower incidence of root rot caused by the pathogen in Kamut and winter wheat seedlings. Hence, the application of these stevioside-S. marianum seed extract conjugate complexes may be put forward as a promising and environmentally friendly treatment for the protection of cereal crops and stored grain against FHB.

15.
Antibiotics (Basel) ; 8(3)2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31330856

RESUMO

Grapevine trunk diseases (GTDs) are a major threat to the wine and grape industry. The aim of the study was to investigate the antifungal activity against Neofusicoccum parvum, Diplodia seriata, and Botryosphaeria dothidea of ε-polylysine, chitosan oligomers, their conjugates, Streptomyces rochei and S. lavendofoliae culture filtrates, and their binary mixtures with chitosan oligomers. In vitro mycelial growth inhibition tests suggest that the efficacy of these treatments, in particular those based on ε-polylysine and ε-polylysine:chitosan oligomers 1:1 w/w conjugate, against the three Botryosphaeriaceae species would be comparable to or higher than that of conventional synthetic fungicides. In the case of ε-polylysine, EC90 values as low as 227, 26.9, and 22.5 µg·mL-1 were obtained for N. parvum, D. seriata, and B. dothidea, respectively. Although the efficacy of the conjugate was slightly lower, with EC90 values of 507.5, 580.2, and 497.4 µg·mL-1, respectively, it may represent a more cost-effective option to the utilization of pure ε-polylysine. The proposed treatments may offer a viable and sustainable alternative for controlling GTDs.

16.
Antibiotics (Basel) ; 7(3)2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115899

RESUMO

Phytophthora cinnamomi, responsible for "root rot" or "dieback" plant disease, causes a significant amount of economic and environmental impact. In this work, the fungicide action of nanocomposites based on silver nanoparticles and polyphenol inclusion compounds, which feature enhanced bioavailability and water solubility, was assayed for the control of this soil-borne water mold. Inclusion compounds were prepared by an aqueous two-phase system separation method through extraction, either in an hydroalcoholic solution with chitosan oligomers (COS) or in a choline chloride:urea:glycerol deep eutectic solvent (DES). The new inclusion compounds were synthesized from stevioside and various polyphenols (gallic acid, silymarin, ferulic acid and curcumin), in a [6:1] ratio in the COS medium and in a [3:1] ratio in the DES medium, respectively. Their in vitro response against Phytophthora cinnamomi isolate MYC43 (at concentrations of 125, 250 and 500 µg·mL-1) was tested, which found a significant mycelial growth inhibition, particularly high for the composites prepared using DES. Therefore, these nanocomposites hold promise as an alternative to fosetyl-Al and metalaxyl conventional systemic fungicides.

17.
Bioresour Technol ; 180: 88-96, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25590423

RESUMO

Native cellulose, lignocellulosic materials from Brazil (carnauba palm leaves and macauba pulp and shell) and pine nut shell from Spain have been studied as substrates for the production of HMF and furfural in a conventional microwave oven. In order to promote the dissolution of native cellulose, several ionic liquids, catalysts, organic solvents and water doses have been assessed. The most suitable mixture (5mL of choline chloride/oxalic acid, 2mL of sulfolane, 2mL of water, 0.02g of TiO2 and 0.1g of substrate) has been chosen to conduct kinetic studies at different reaction times (5-60min) and various temperatures (120-200°C) and to evaluate the best conditions for HMF+furfural production according to Seaman's model. The best production yields of HMF+furfural have been attained for native cellulose, with a yield of 53.24% when an ultrasonic pretreatment was used prior to a microwave treatment with stirring.


Assuntos
Biotecnologia/métodos , Celulose/metabolismo , Furaldeído/análogos & derivados , Micro-Ondas , Brasil , Interpretação Estatística de Dados , Furaldeído/metabolismo , Líquidos Iônicos/química , Cinética , Lignina/metabolismo , Modelos Teóricos , Folhas de Planta/química , Espanha , Temperatura , Ultrassom/métodos , Resíduos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...